Skip to main content Link Menu Expand (external link) Document Search Copy Copied

Polygenic risk scores

Our Aim

We aim to generate and make polygenic risk scores (PRS) available for CLS cohorts using a standardised pipeline which is transparent, efficient, and updatable. Our approach to sharing these data seeks to balance the ethical need to make data available to enable research with the ethical need to avoid potential risks.

This will be for multiple health and social traits, and made available on UKDS via special license.

Data availability

Forthcoming / in preparation. We are aiming for this to be delivered by end of 2024 (capacity depending - we are recruiting for a replacement genetics data manager); we will email genetics data applicants when this is available. For further updates please email clsdata@ucl.ac.uk

PRS traits

Domain Trait Reference
Physical health / anthropometrics Addictive behaviour/ substance abuse Hatoum et al. 2023
Physical health / anthropometrics Age at initiation of smoking Liu et al. 2019
Physical health / anthropometrics Age at menarche Day et al. 2017
Physical health / anthropometrics Age at menopause Ruth et al. 2021
Physical health / anthropometrics Asthma Han et al. 2020
Physical health / anthropometrics Birth weight Warrington et al. 2019
Physical health / anthropometrics Blood pressure Keaton et al. 2024
Physical health / anthropometrics Body fat percentage Roshandel et al. 2023
Physical health / anthropometrics Body Mass Index Yengo et al. 2018
Physical health / anthropometrics Body Mass Index childhood Vogelezang et al. 2020
Physical health / anthropometrics Coronary artery disease Aragam et al. 2022
Physical health / anthropometrics C-reactive protein measurement Koskeridis et al. 2022
Physical health / anthropometrics Fasting blood glucose measurement Downie et al. 2022
Physical health / anthropometrics Grip strength measurement Mullins et al. 2021
Physical health / anthropometrics HbA1c measurement Sinnott-Armstrong et al. 2021
Physical health / anthropometrics Hypertension Bi et al. 2020
Physical health / anthropometrics Rheumatoid arthritis Ishigaki et al. 2022
Physical health / anthropometrics T1 Diabetes Chiou et al. 2021
Physical health / anthropometrics T2 Diabetes Suzuki et al. 2024
Physical health / anthropometrics Waist circumference Christakoudi et al. 2021
Mental health and cognition Anxiety Forstner et al. 2021
Mental health and cognition ADHD Demontis et al. 2023
Mental health and cognition Alzheimer’s Disease Bellenguez et al. 2022
Mental health and cognition Autism spectrum disorder Grove et al. 2019
Mental health and cognition Bipolar disorder Mullins et al. 2021
Mental health and cognition Cognition Savage et al. 2018
Mental health and cognition Hippocampal volume Liu et al. 2023
Mental health and cognition Major depressive disorder Howard et al. 2019
Mental health and cognition Parkinson’s disease Nalls et al. 2019
Mental health and cognition Schizophrenia Trubetskoy et al. 2022
Health/ health behaviours Alcohol consumption Liu et al. 2019
Health/ health behaviours Cigarettes per day Liu et al. 2019
Health/ health behaviours Diet Cole et al. 2020
Health/ health behaviours Drinks per week Liu et al. 2019
Health/ health behaviours Smoking Liu et al. 2019
Social outcomes Education Okbay et al. 2022
Social outcomes Household Income Hill et al. 2019
Social outcomes Human Longevity Pilling et al. 2017
Social outcomes Parental Lifespan Timmers et al. 2019
Personality Agreeableness Gupta et al. 2024
Personality Conscientiousness Gupta et al. 2024
Personality Openness to experience Gupta et al. 2024
Personality Neuroticism Gupta et al. 2024
Personality Loneliness Gupta et al. 2024

References

Aragam, K. G., Jiang, T., Goel, A., Kanoni, S., Wolford, B. N., Atri, D. S., Weeks, E. M., Wang, M., Hindy, G., Zhou, W., Grace, C., Roselli, C., Marston, N. A., Kamanu, F. K., Surakka, I., Venegas, L. M., Sherliker, P., Koyama, S., Ishigaki, K., … CARDIoGRAMplusC4D Consortium. 2022. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nature Genetics, 5412, 1803–1815. https://doi.org/10.1038/s41588-022-01233-6

Bellenguez, C., Küçükali, F., Jansen, I. E., Kleineidam, L., Moreno-Grau, S., Amin, N., Naj, A. C., Campos-Martin, R., Grenier-Boley, B., Andrade, V., Holmans, P. A., Boland, A., Damotte, V., van der Lee, S. J., Costa, M. R., Kuulasmaa, T., Yang, Q., de Rojas, I., Bis, J. C., … et al. 2022. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nature Genetics, 544, 412–436. https://doi.org/10.1038/s41588-022-01024-z

Bi, W., Fritsche, L. G., Mukherjee, B., Kim, S., & Lee, S. 2020. A Fast and Accurate Method for Genome-Wide Time-to-Event Data Analysis and Its Application to UK Biobank. American Journal of Human Genetics, 1072, 222–233. https://doi.org/10.1016/j.ajhg.2020.06.003

Chiou, J., Geusz, R. J., Okino, M.-L., Han, J. Y., Miller, M., Melton, R., Beebe, E., Benaglio, P., Huang, S., Korgaonkar, K., Heller, S., Kleger, A., Preissl, S., Gorkin, D. U., Sander, M., & Gaulton, K. J. 2021. Interpreting type 1 diabetes risk with genetics and single-cell epigenomics. Nature, 5947863, 398–402. https://doi.org/10.1038/s41586-021-03552-w

Christakoudi, S., Evangelou, E., Riboli, E., & Tsilidis, K. K. 2021. GWAS of allometric body-shape indices in UK Biobank identifies loci suggesting associations with morphogenesis, organogenesis, adrenal cell renewal and cancer. Scientific Reports, 111, 10688. https://doi.org/10.1038/s41598-021-89176-6

Cole, J. B., Florez, J. C., & Hirschhorn, J. N. 2020. Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations. Nature Communications, 111, 1467. https://doi.org/10.1038/s41467-020-15193-0

Day, F. R., Thompson, D. J., Helgason, H., Chasman, D. I., Finucane, H., Sulem, P., Ruth, K. S., Whalen, S., Sarkar, A. K., Albrecht, E., Altmaier, E., Amini, M., Barbieri, C. M., Boutin, T., Campbell, A., Demerath, E., Giri, A., He, C., Hottenga, J. J., … et al. 2017. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nature Genetics, 496, 834–841. https://doi.org/10.1038/ng.3841

Demontis, D., Walters, G. B., Athanasiadis, G., Walters, R., Therrien, K., Nielsen, T. T., Farajzadeh, L., Voloudakis, G., Bendl, J., Zeng, B., Zhang, W., Grove, J., Als, T. D., Duan, J., Satterstrom, F. K., Bybjerg-Grauholm, J., Bækved-Hansen, M., Gudmundsson, O. O., Magnusson, S. H., … Børglum, A. D. 2023. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nature Genetics, 552, 198–208. https://doi.org/10.1038/s41588-022-01285-8

Downie, C. G., Dimos, S. F., Bien, S. A., Hu, Y., Darst, B. F., Polfus, L. M., Wang, Y., Wojcik, G. L., Tao, R., Raffield, L. M., Armstrong, N. D., Polikowsky, H. G., Below, J. E., Correa, A., Irvin, M. R., Rasmussen-Torvik, L. J. F., Carlson, C. S., Phillips, L. S., Liu, S., … Highland, H. M. 2022. Multi-ethnic GWAS and fine-mapping of glycaemic traits identify novel loci in the PAGE Study. Diabetologia, 653, 477–489. https://doi.org/10.1007/s00125-021-05635-9

Forstner, A. J., Awasthi, S., Wolf, C., Maron, E., Erhardt, A., Czamara, D., Eriksson, E., Lavebratt, C., Allgulander, C., Friedrich, N., Becker, J., Hecker, J., Rambau, S., Conrad, R., Geiser, F., McMahon, F. J., Moebus, S., Hess, T., Buerfent, B. C., … Schumacher, J. 2021. Genome-wide association study of panic disorder reveals genetic overlap with neuroticism and depression. Molecular Psychiatry, 268, 4179–4190. https://doi.org/10.1038/s41380-019-0590-2

Grove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R. K., Won, H., Pallesen, J., Agerbo, E., Andreassen, O. A., Anney, R., Awashti, S., Belliveau, R., Bettella, F., Buxbaum, J. D., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Cerrato, F., Chambert, K., Christensen, J. H., … Børglum, A. D. 2019. Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 513, 431–444. https://doi.org/10.1038/s41588-019-0344-8

Gupta, P., Galimberti, M., Liu, Y., Beck, S., Wingo, A., Wingo, T., Adhikari, K., Kranzler, H. R., VA Million Veteran Program, Stein, M. B., Gelernter, J., & Levey, D. F. 2024. A genome-wide investigation into the underlying genetic architecture of personality traits and overlap with psychopathology. Nature Human Behaviour. https://doi.org/10.1038/s41562-024-01951-3

Han, Y., Jia, Q., Jahani, P. S., Hurrell, B. P., Pan, C., Huang, P., Gukasyan, J., Woodward, N. C., Eskin, E., Gilliland, F. D., Akbari, O., Hartiala, J. A., & Allayee, H. 2020. Genome-wide analysis highlights contribution of immune system pathways to the genetic architecture of asthma. Nature Communications, 111, 1776. https://doi.org/10.1038/s41467-020-15649-3

Hatoum, A. S., Colbert, S. M. C., Johnson, E. C., Huggett, S. B., Deak, J. D., Pathak, G., Jennings, M. V., Paul, S. E., Karcher, N. R., Hansen, I., Baranger, D. A. A., Edwards, A., Grotzinger, A., Substance Use Disorder Working Group of the Psychiatric Genomics Consortium, Tucker-Drob, E. M., Kranzler, H. R., Davis, L. K., Sanchez-Roige, S., Polimanti, R., … Agrawal, A. 2023. Multivariate genome-wide association meta-analysis of over 1 million subjects identifies loci underlying multiple substance use disorders. Nature. Mental Health, 13, 210–223. https://doi.org/10.1038/s44220-023-00034-y

Hill, W. D., Davies, N. M., Ritchie, S. J., Skene, N. G., Bryois, J., Bell, S., Di Angelantonio, E., Roberts, D. J., Xueyi, S., Davies, G., Liewald, D. C. M., Porteous, D. J., Hayward, C., Butterworth, A. S., McIntosh, A. M., Gale, C. R., & Deary, I. J. 2019. Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income. Nature Communications, 101, 5741. https://doi.org/10.1038/s41467-019-13585-5

Howard, D. M., Adams, M. J., Clarke, T.-K., Hafferty, J. D., Gibson, J., Shirali, M., Coleman, J. R. I., Hagenaars, S. P., Ward, J., Wigmore, E. M., Alloza, C., Shen, X., Barbu, M. C., Xu, E. Y., Whalley, H. C., Marioni, R. E., Porteous, D. J., Davies, G., Deary, I. J., … McIntosh, A. M. 2019. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nature Neuroscience, 223, 343–352. https://doi.org/10.1038/s41593-018-0326-7

Ishigaki, K., Sakaue, S., Terao, C., Luo, Y., Sonehara, K., Yamaguchi, K., Amariuta, T., Too, C. L., Laufer, V. A., Scott, I. C., Viatte, S., Takahashi, M., Ohmura, K., Murasawa, A., Hashimoto, M., Ito, H., Hammoudeh, M., Emadi, S. A., Masri, B. K., … Raychaudhuri, S. 2022. Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nature Genetics, 5411, 1640–1651. https://doi.org/10.1038/s41588-022-01213-w

Keaton, J. M., Kamali, Z., Xie, T., Vaez, A., Williams, A., Goleva, S. B., Ani, A., Evangelou, E., Hellwege, J. N., Yengo, L., Young, W. J., Traylor, M., Giri, A., Zheng, Z., Zeng, J., Chasman, D. I., Morris, A. P., Caulfield, M. J., Hwang, S.-J., … Warren, H. R. 2024. Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk scores for blood pressure traits. Nature Genetics, 565, 778–791. https://doi.org/10.1038/s41588-024-01714-w

Koskeridis, F., Evangelou, E., Said, S., Boyle, J. J., Elliott, P., Dehghan, A., & Tzoulaki, I. 2022. Pleiotropic genetic architecture and novel loci for C-reactive protein levels. Nature Communications, 131, 6939. https://doi.org/10.1038/s41467-022-34688-6

Liu, M., Jiang, Y., Wedow, R., Li, Y., Brazel, D. M., Chen, F., Datta, G., Davila-Velderrain, J., McGuire, D., Tian, C., Zhan, X., 23andMe Research Team, HUNT All-In Psychiatry, Choquet, H., Docherty, A. R., Faul, J. D., Foerster, J. R., Fritsche, L. G., Gabrielsen, M. E., … Vrieze, S. 2019. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nature Genetics, 512, 237–244. https://doi.org/10.1038/s41588-018-0307-5

Liu, N., Zhang, L., Tian, T., Cheng, J., Zhang, B., Qiu, S., Geng, Z., Cui, G., Zhang, Q., Liao, W., Yu, Y., Zhang, H., Gao, B., Xu, X., Han, T., Yao, Z., Qin, W., Liu, F., Liang, M., … CHIMGEN Consortium. 2023. Cross-ancestry genome-wide association meta-analyses of hippocampal and subfield volumes. Nature Genetics, 557, 1126–1137. https://doi.org/10.1038/s41588-023-01425-8

Mullins, N., Forstner, A. J., O’Connell, K. S., Coombes, B., Coleman, J. R. I., Qiao, Z., Als, T. D., Bigdeli, T. B., Børte, S., Bryois, J., Charney, A. W., Drange, O. K., Gandal, M. J., Hagenaars, S. P., Ikeda, M., Kamitaki, N., Kim, M., Krebs, K., Panagiotaropoulou, G., … et al. 2021. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 536, 817–829. https://doi.org/10.1038/s41588-021-00857-4

Nalls, M. A., Blauwendraat, C., Vallerga, C. L., Heilbron, K., Bandres-Ciga, S., Chang, D., Tan, M., Kia, D. A., Noyce, A. J., Xue, A., Bras, J., Young, E., von Coelln, R., Simón-Sánchez, J., Schulte, C., Sharma, M., Krohn, L., Pihlstrøm, L., Siitonen, A., … International Parkinson’s Disease Genomics Consortium. 2019. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurology, 1812, 1091–1102. https://doi.org/10.1016/S1474-44221930320-5

Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S. M., Sidorenko, J., Kweon, H., Goldman, G., Gjorgjieva, T., Jiang, Y., Hicks, B., Tian, C., Hinds, D. A., Ahlskog, R., Magnusson, P. K. E., Oskarsson, S., Hayward, C., Campbell, A., … Young, A. I. 2022. Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nature Genetics, 544, 437–449. https://doi.org/10.1038/s41588-022-01016-z

Pilling, L. C., Kuo, C.-L., Sicinski, K., Tamosauskaite, J., Kuchel, G. A., Harries, L. W., Herd, P., Wallace, R., Ferrucci, L., & Melzer, D. 2017. Human longevity: 25 genetic loci associated in 389,166 UK biobank participants. Aging, 912, 2504–2520. https://doi.org/10.18632/aging.101334

Roshandel, D., Lu, T., Paterson, A. D., & Dash, S. 2023. Beyond apples and pears: sex-specific genetics of body fat percentage. Frontiers in Endocrinology, 14, 1274791. https://doi.org/10.3389/fendo.2023.1274791

Ruth, K. S., Day, F. R., Hussain, J., Martínez-Marchal, A., Aiken, C. E., Azad, A., Thompson, D. J., Knoblochova, L., Abe, H., Tarry-Adkins, J. L., Gonzalez, J. M., Fontanillas, P., Claringbould, A., Bakker, O. B., Sulem, P., Walters, R. G., Terao, C., Turon, S., Horikoshi, M., … et al. 2021. Genetic insights into biological mechanisms governing human ovarian ageing. Nature, 5967872, 393–397. https://doi.org/10.1038/s41586-021-03779-7

Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., de Leeuw, C. A., Nagel, M., Awasthi, S., Barr, P. B., Coleman, J. R. I., Grasby, K. L., Hammerschlag, A. R., Kaminski, J. A., Karlsson, R., Krapohl, E., Lam, M., Nygaard, M., Reynolds, C. A., Trampush, J. W., … Posthuma, D. 2018. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 507, 912–919. https://doi.org/10.1038/s41588-018-0152-6

Sinnott-Armstrong, N., Tanigawa, Y., Amar, D., Mars, N., Benner, C., Aguirre, M., Venkataraman, G. R., Wainberg, M., Ollila, H. M., Kiiskinen, T., Havulinna, A. S., Pirruccello, J. P., Qian, J., Shcherbina, A., FinnGen, Rodriguez, F., Assimes, T. L., Agarwala, V., Tibshirani, R., … Rivas, M. A. 2021. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nature Genetics, 532, 185–194. https://doi.org/10.1038/s41588-020-00757-z

Suzuki, K., Hatzikotoulas, K., Southam, L., Taylor, H. J., Yin, X., Lorenz, K. M., Mandla, R., Huerta-Chagoya, A., Melloni, G. E. M., Kanoni, S., Rayner, N. W., Bocher, O., Arruda, A. L., Sonehara, K., Namba, S., Lee, S. S. K., Preuss, M. H., Petty, L. E., Schroeder, P., … et al. 2024. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature, 6278003, 347–357. https://doi.org/10.1038/s41586-024-07019-6

Timmers, P. R., Mounier, N., Lall, K., Fischer, K., Ning, Z., Feng, X., Bretherick, A. D., Clark, D. W., eQTLGen Consortium, Shen, X., Esko, T., Kutalik, Z., Wilson, J. F., & Joshi, P. K. 2019. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. ELife, 8. https://doi.org/10.7554/eLife.39856

Trubetskoy, V., Pardiñas, A. F., Qi, T., Panagiotaropoulou, G., Awasthi, S., Bigdeli, T. B., Bryois, J., Chen, C.-Y., Dennison, C. A., Hall, L. S., Lam, M., Watanabe, K., Frei, O., Ge, T., Harwood, J. C., Koopmans, F., Magnusson, S., Richards, A. L., Sidorenko, J., … et al. 2022. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 6047906, 502–508. https://doi.org/10.1038/s41586-022-04434-5

Vogelezang, S., Bradfield, J. P., Ahluwalia, T. S., Curtin, J. A., Lakka, T. A., Grarup, N., Scholz, M., van der Most, P. J., Monnereau, C., Stergiakouli, E., Heiskala, A., Horikoshi, M., Fedko, I. O., Vilor-Tejedor, N., Cousminer, D. L., Standl, M., Wang, C. A., Viikari, J., Geller, F., … Felix, J. F. 2020. Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits. PLoS Genetics, 1610, e1008718. https://doi.org/10.1371/journal.pgen.1008718

Warrington, N. M., Beaumont, R. N., Horikoshi, M., Day, F. R., Helgeland, Ø., Laurin, C., Bacelis, J., Peng, S., Hao, K., Feenstra, B., Wood, A. R., Mahajan, A., Tyrrell, J., Robertson, N. R., Rayner, N. W., Qiao, Z., Moen, G.-H., Vaudel, M., Marsit, C. J., … et al. 2019. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nature Genetics, 515, 804–814. https://doi.org/10.1038/s41588-019-0403-1

Yengo, L., Sidorenko, J., Kemper, K. E., Zheng, Z., Wood, A. R., Weedon, M. N., Frayling, T. M., Hirschhorn, J., Yang, J., Visscher, P. M., & GIANT Consortium. 2018. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Human Molecular Genetics, 2720, 3641–3649. https://doi.org/10.1093/hmg/ddy271