Polygenic indexes
Our Aim
We aim to generate and make polygenic indexes (PGI) available for all CLS cohorts using a standardised pipeline which is transparent, efficient, and updatable. Our approach to sharing these data seeks to balance the need to make data available to enable research with the ethical need to avoid potential risks.
PGI will be derived for multiple health and social traits (below), and made available on the UKDS via special license agreement.
We are aiming for a full release of the PGI in 2025, though this is dependent on internal capacity. We will email genetics data applicants when the data are available. For further updates please email clsdata@ucl.ac.uk.
In the interim, we have a selection of PGI that can be obtained via application to the CLS DAC (see Introduction). These PGI are available for the NCDS, BCS, Next Steps, and MCS (parents and children).
Current PGI available via the DAC (last updated 31/03/2025)
Domain | Trait | Reference |
---|---|---|
Social outcomes | Education | Okbay et al. 2022 |
Brain structure and cognition | Cognition | Lee et al. 2018 |
Brain structure and cognition | Cognition | Savage et al. 2018 |
Mental health | Externalising problems | Karlsson Linnér et al. 2021 |
Anthropometrics | Body Mass Index | Yengo et al. 2018 |
Forthcoming additional PGI for full release
Anthropometrics
Trait | Reference |
---|---|
Birth weight | Warrington et al. 2019 |
Body fat distribution | Pulit et al. 2018 |
Body Mass Index (childhood) | Vogelezang et al. 2020 |
Body Mass Index (adulthood) | Yengo et al. 2018 |
Grip strength | Jones et al. 2021 |
Height | Yengo et al. 2018 |
Waist circumference | Christakoudi et al. 2021 |
Brain structure and cognition
Trait | Reference |
---|---|
Alzheimer’s disease | Bellenguez et al. 2022 |
Hippocampal volume | Liu et al. 2023 |
Parkinson’s disease | Nalls et al. 2019 |
Health behaviours
Trait | Reference |
---|---|
Substance abuse | Hatoum et al. 2023 |
Age at initiation of smoking | Liu et al. 2019 |
Alcoholic drinks per week | Liu et al. 2019 |
Cigarettes per day | Liu et al. 2019 |
Diet | Cole et al. 2020 |
Mental health
Trait | Reference |
---|---|
Anxiety | Forstner et al. 2021 |
ADHD | Demontis et al. 2023 |
Autism spectrum disorder | Grove et al. 2019 |
Bipolar disorder | Mullins et al. 2021 |
Depressive symptoms | Baselmans et al. 2019 |
Major depressive disorder | Howard et al. 2019 |
Schizophrenia | Trubetskoy et al. 2022 |
Personality
Trait | Reference |
---|---|
Agreeableness | Gupta et al. 2024 |
Conscientiousness | Gupta et al. 2024 |
Extraversion | Gupta et al. 2024 |
Openness to experience | Gupta et al. 2024 |
Neuroticism | Gupta et al. 2024 |
Physical health
Trait | Reference |
---|---|
Age at menopause | Ruth et al. 2021 |
Asthma | Han et al. 2020 |
Blood pressure | Keaton et al. 2024 |
Coronary artery disease | Aragam et al. 2022 |
C-reactive protein | Koskeridis et al. 2022 |
Fasting glucose | Downie et al. 2022 |
HbA1c | Sinnott-Armstrong et al. 2021 |
Hypertension | Bi et al. 2020 |
Rheumatoid arthritis | Ishigaki et al. 2022 |
Type 1 Diabetes | Chiou et al. 2021 |
Type 2 Diabetes | Suzuki et al. 2024 |
Social outcomes
Trait | Reference |
---|---|
Household Income | Hill et al. 2019 |
Human Longevity | Pilling et al. 2017 |
Parental Lifespan | Timmers et al. 2019 |
References
Aragam, K. G., Jiang, T., Goel, A., Kanoni, S., Wolford, B. N., Atri, D. S., Weeks, E. M., Wang, M., Hindy, G., Zhou, W., Grace, C., Roselli, C., Marston, N. A., Kamanu, F. K., Surakka, I., Venegas, L. M., Sherliker, P., Koyama, S., Ishigaki, K., … CARDIoGRAMplusC4D Consortium. 2022. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nature Genetics, 5412, 1803–1815. https://doi.org/10.1038/s41588-022-01233-6
Baselmans, B. M. L., Jansen, R., Ip, H. F., van Dongen, J., Abdellaoui, A., van de Weijer, M. P., Bao, Y., Smart, M., Kumari, M., Willemsen, G., Hottenga, J. J., BIOS consortium, Social Science Genetic Association Consortium, Boomsma, D. I., de Geus, E. J. C., Nivard, M. G., & Bartels, M. (2019). Multivariate genome-wide analyses of the well-being spectrum. Nature genetics, 51(3), 445–451. https://doi.org/10.1038/s41588-018-0320-8
Bellenguez, C., Küçükali, F., Jansen, I. E., Kleineidam, L., Moreno-Grau, S., Amin, N., Naj, A. C., Campos-Martin, R., Grenier-Boley, B., Andrade, V., Holmans, P. A., Boland, A., Damotte, V., van der Lee, S. J., Costa, M. R., Kuulasmaa, T., Yang, Q., de Rojas, I., Bis, J. C., … et al. 2022. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nature Genetics, 544, 412–436. https://doi.org/10.1038/s41588-022-01024-z
Bi, W., Fritsche, L. G., Mukherjee, B., Kim, S., & Lee, S. 2020. A Fast and Accurate Method for Genome-Wide Time-to-Event Data Analysis and Its Application to UK Biobank. American Journal of Human Genetics, 1072, 222–233. https://doi.org/10.1016/j.ajhg.2020.06.003
Chiou, J., Geusz, R. J., Okino, M.-L., Han, J. Y., Miller, M., Melton, R., Beebe, E., Benaglio, P., Huang, S., Korgaonkar, K., Heller, S., Kleger, A., Preissl, S., Gorkin, D. U., Sander, M., & Gaulton, K. J. 2021. Interpreting type 1 diabetes risk with genetics and single-cell epigenomics. Nature, 5947863, 398–402. https://doi.org/10.1038/s41586-021-03552-w
Christakoudi, S., Evangelou, E., Riboli, E., & Tsilidis, K. K. 2021. GWAS of allometric body-shape indices in UK Biobank identifies loci suggesting associations with morphogenesis, organogenesis, adrenal cell renewal and cancer. Scientific Reports, 111, 10688. https://doi.org/10.1038/s41598-021-89176-6
Cole, J. B., Florez, J. C., & Hirschhorn, J. N. 2020. Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations. Nature Communications, 111, 1467. https://doi.org/10.1038/s41467-020-15193-0
Day, F. R., Thompson, D. J., Helgason, H., Chasman, D. I., Finucane, H., Sulem, P., Ruth, K. S., Whalen, S., Sarkar, A. K., Albrecht, E., Altmaier, E., Amini, M., Barbieri, C. M., Boutin, T., Campbell, A., Demerath, E., Giri, A., He, C., Hottenga, J. J., … et al. 2017. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nature Genetics, 496, 834–841. https://doi.org/10.1038/ng.3841
Demontis, D., Walters, G. B., Athanasiadis, G., Walters, R., Therrien, K., Nielsen, T. T., Farajzadeh, L., Voloudakis, G., Bendl, J., Zeng, B., Zhang, W., Grove, J., Als, T. D., Duan, J., Satterstrom, F. K., Bybjerg-Grauholm, J., Bækved-Hansen, M., Gudmundsson, O. O., Magnusson, S. H., … Børglum, A. D. 2023. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nature Genetics, 552, 198–208. https://doi.org/10.1038/s41588-022-01285-8
Downie, C. G., Dimos, S. F., Bien, S. A., Hu, Y., Darst, B. F., Polfus, L. M., Wang, Y., Wojcik, G. L., Tao, R., Raffield, L. M., Armstrong, N. D., Polikowsky, H. G., Below, J. E., Correa, A., Irvin, M. R., Rasmussen-Torvik, L. J. F., Carlson, C. S., Phillips, L. S., Liu, S., … Highland, H. M. 2022. Multi-ethnic GWAS and fine-mapping of glycaemic traits identify novel loci in the PAGE Study. Diabetologia, 653, 477–489. https://doi.org/10.1007/s00125-021-05635-9
Forstner, A. J., Awasthi, S., Wolf, C., Maron, E., Erhardt, A., Czamara, D., Eriksson, E., Lavebratt, C., Allgulander, C., Friedrich, N., Becker, J., Hecker, J., Rambau, S., Conrad, R., Geiser, F., McMahon, F. J., Moebus, S., Hess, T., Buerfent, B. C., … Schumacher, J. 2021. Genome-wide association study of panic disorder reveals genetic overlap with neuroticism and depression. Molecular Psychiatry, 268, 4179–4190. https://doi.org/10.1038/s41380-019-0590-2
Grove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R. K., Won, H., Pallesen, J., Agerbo, E., Andreassen, O. A., Anney, R., Awashti, S., Belliveau, R., Bettella, F., Buxbaum, J. D., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Cerrato, F., Chambert, K., Christensen, J. H., … Børglum, A. D. 2019. Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 513, 431–444. https://doi.org/10.1038/s41588-019-0344-8
Gupta, P., Galimberti, M., Liu, Y., Beck, S., Wingo, A., Wingo, T., Adhikari, K., Kranzler, H. R., VA Million Veteran Program, Stein, M. B., Gelernter, J., & Levey, D. F. 2024. A genome-wide investigation into the underlying genetic architecture of personality traits and overlap with psychopathology. Nature Human Behaviour. https://doi.org/10.1038/s41562-024-01951-3
Han, Y., Jia, Q., Jahani, P. S., Hurrell, B. P., Pan, C., Huang, P., Gukasyan, J., Woodward, N. C., Eskin, E., Gilliland, F. D., Akbari, O., Hartiala, J. A., & Allayee, H. 2020. Genome-wide analysis highlights contribution of immune system pathways to the genetic architecture of asthma. Nature Communications, 111, 1776. https://doi.org/10.1038/s41467-020-15649-3
Hatoum, A. S., Colbert, S. M. C., Johnson, E. C., Huggett, S. B., Deak, J. D., Pathak, G., Jennings, M. V., Paul, S. E., Karcher, N. R., Hansen, I., Baranger, D. A. A., Edwards, A., Grotzinger, A., Substance Use Disorder Working Group of the Psychiatric Genomics Consortium, Tucker-Drob, E. M., Kranzler, H. R., Davis, L. K., Sanchez-Roige, S., Polimanti, R., … Agrawal, A. 2023. Multivariate genome-wide association meta-analysis of over 1 million subjects identifies loci underlying multiple substance use disorders. Nature. Mental Health, 13, 210–223. https://doi.org/10.1038/s44220-023-00034-y
Hill, W. D., Davies, N. M., Ritchie, S. J., Skene, N. G., Bryois, J., Bell, S., Di Angelantonio, E., Roberts, D. J., Xueyi, S., Davies, G., Liewald, D. C. M., Porteous, D. J., Hayward, C., Butterworth, A. S., McIntosh, A. M., Gale, C. R., & Deary, I. J. 2019. Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income. Nature Communications, 101, 5741. https://doi.org/10.1038/s41467-019-13585-5
Howard, D. M., Adams, M. J., Clarke, T.-K., Hafferty, J. D., Gibson, J., Shirali, M., Coleman, J. R. I., Hagenaars, S. P., Ward, J., Wigmore, E. M., Alloza, C., Shen, X., Barbu, M. C., Xu, E. Y., Whalley, H. C., Marioni, R. E., Porteous, D. J., Davies, G., Deary, I. J., … McIntosh, A. M. 2019. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nature Neuroscience, 223, 343–352. https://doi.org/10.1038/s41593-018-0326-7
Ishigaki, K., Sakaue, S., Terao, C., Luo, Y., Sonehara, K., Yamaguchi, K., Amariuta, T., Too, C. L., Laufer, V. A., Scott, I. C., Viatte, S., Takahashi, M., Ohmura, K., Murasawa, A., Hashimoto, M., Ito, H., Hammoudeh, M., Emadi, S. A., Masri, B. K., … Raychaudhuri, S. 2022. Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nature Genetics, 5411, 1640–1651. https://doi.org/10.1038/s41588-022-01213-w
Jones, G., Trajanoska, K., Santanasto, A.J. et al. Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women. Nat Commun 12, 654 (2021). https://doi.org/10.1038/s41467-021-20918-w
Karlsson Linnér, R., Mallard, T.T., Barr, P.B. et al. Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nat Neurosci 24, 1367–1376 (2021). https://doi.org/10.1038/s41593-021-00908-3
Keaton, J. M., Kamali, Z., Xie, T., Vaez, A., Williams, A., Goleva, S. B., Ani, A., Evangelou, E., Hellwege, J. N., Yengo, L., Young, W. J., Traylor, M., Giri, A., Zheng, Z., Zeng, J., Chasman, D. I., Morris, A. P., Caulfield, M. J., Hwang, S.-J., … Warren, H. R. 2024. Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk scores for blood pressure traits. Nature Genetics, 565, 778–791. https://doi.org/10.1038/s41588-024-01714-w
Koskeridis, F., Evangelou, E., Said, S., Boyle, J. J., Elliott, P., Dehghan, A., & Tzoulaki, I. 2022. Pleiotropic genetic architecture and novel loci for C-reactive protein levels. Nature Communications, 131, 6939. https://doi.org/10.1038/s41467-022-34688-6
Lee, J.J., Wedow, R., Okbay, A. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet 50, 1112–1121 (2018). https://doi.org/10.1038/s41588-018-0147-3
Liu, M., Jiang, Y., Wedow, R., Li, Y., Brazel, D. M., Chen, F., Datta, G., Davila-Velderrain, J., McGuire, D., Tian, C., Zhan, X., 23andMe Research Team, HUNT All-In Psychiatry, Choquet, H., Docherty, A. R., Faul, J. D., Foerster, J. R., Fritsche, L. G., Gabrielsen, M. E., … Vrieze, S. 2019. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nature Genetics, 512, 237–244. https://doi.org/10.1038/s41588-018-0307-5
Liu, N., Zhang, L., Tian, T., Cheng, J., Zhang, B., Qiu, S., Geng, Z., Cui, G., Zhang, Q., Liao, W., Yu, Y., Zhang, H., Gao, B., Xu, X., Han, T., Yao, Z., Qin, W., Liu, F., Liang, M., … CHIMGEN Consortium. 2023. Cross-ancestry genome-wide association meta-analyses of hippocampal and subfield volumes. Nature Genetics, 557, 1126–1137. https://doi.org/10.1038/s41588-023-01425-8
Mullins, N., Forstner, A. J., O’Connell, K. S., Coombes, B., Coleman, J. R. I., Qiao, Z., Als, T. D., Bigdeli, T. B., Børte, S., Bryois, J., Charney, A. W., Drange, O. K., Gandal, M. J., Hagenaars, S. P., Ikeda, M., Kamitaki, N., Kim, M., Krebs, K., Panagiotaropoulou, G., … et al. 2021. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 536, 817–829. https://doi.org/10.1038/s41588-021-00857-4
Nalls, M. A., Blauwendraat, C., Vallerga, C. L., Heilbron, K., Bandres-Ciga, S., Chang, D., Tan, M., Kia, D. A., Noyce, A. J., Xue, A., Bras, J., Young, E., von Coelln, R., Simón-Sánchez, J., Schulte, C., Sharma, M., Krohn, L., Pihlstrøm, L., Siitonen, A., … International Parkinson’s Disease Genomics Consortium. 2019. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurology, 1812, 1091–1102. https://doi.org/10.1016/S1474-44221930320-5
Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S. M., Sidorenko, J., Kweon, H., Goldman, G., Gjorgjieva, T., Jiang, Y., Hicks, B., Tian, C., Hinds, D. A., Ahlskog, R., Magnusson, P. K. E., Oskarsson, S., Hayward, C., Campbell, A., … Young, A. I. 2022. Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nature Genetics, 544, 437–449. https://doi.org/10.1038/s41588-022-01016-z
Pilling, L. C., Kuo, C.-L., Sicinski, K., Tamosauskaite, J., Kuchel, G. A., Harries, L. W., Herd, P., Wallace, R., Ferrucci, L., & Melzer, D. 2017. Human longevity: 25 genetic loci associated in 389,166 UK biobank participants. Aging, 912, 2504–2520. https://doi.org/10.18632/aging.101334
Pulit, S. L., Stoneman, C., Morris, A. P., Wood, A. R., Glastonbury, C. A., Tyrrell, J., … & Lindgren, C. M. (2019). Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Human molecular genetics, 28(1), 166-174.
Ruth, K. S., Day, F. R., Hussain, J., Martínez-Marchal, A., Aiken, C. E., Azad, A., Thompson, D. J., Knoblochova, L., Abe, H., Tarry-Adkins, J. L., Gonzalez, J. M., Fontanillas, P., Claringbould, A., Bakker, O. B., Sulem, P., Walters, R. G., Terao, C., Turon, S., Horikoshi, M., … et al. 2021. Genetic insights into biological mechanisms governing human ovarian ageing. Nature, 5967872, 393–397. https://doi.org/10.1038/s41586-021-03779-7
Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., de Leeuw, C. A., Nagel, M., Awasthi, S., Barr, P. B., Coleman, J. R. I., Grasby, K. L., Hammerschlag, A. R., Kaminski, J. A., Karlsson, R., Krapohl, E., Lam, M., Nygaard, M., Reynolds, C. A., Trampush, J. W., … Posthuma, D. 2018. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 507, 912–919. https://doi.org/10.1038/s41588-018-0152-6
Sinnott-Armstrong, N., Tanigawa, Y., Amar, D., Mars, N., Benner, C., Aguirre, M., Venkataraman, G. R., Wainberg, M., Ollila, H. M., Kiiskinen, T., Havulinna, A. S., Pirruccello, J. P., Qian, J., Shcherbina, A., FinnGen, Rodriguez, F., Assimes, T. L., Agarwala, V., Tibshirani, R., … Rivas, M. A. 2021. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nature Genetics, 532, 185–194. https://doi.org/10.1038/s41588-020-00757-z
Suzuki, K., Hatzikotoulas, K., Southam, L., Taylor, H. J., Yin, X., Lorenz, K. M., Mandla, R., Huerta-Chagoya, A., Melloni, G. E. M., Kanoni, S., Rayner, N. W., Bocher, O., Arruda, A. L., Sonehara, K., Namba, S., Lee, S. S. K., Preuss, M. H., Petty, L. E., Schroeder, P., … et al. 2024. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature, 6278003, 347–357. https://doi.org/10.1038/s41586-024-07019-6
Timmers, P. R., Mounier, N., Lall, K., Fischer, K., Ning, Z., Feng, X., Bretherick, A. D., Clark, D. W., eQTLGen Consortium, Shen, X., Esko, T., Kutalik, Z., Wilson, J. F., & Joshi, P. K. 2019. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. ELife, 8. https://doi.org/10.7554/eLife.39856
Trubetskoy, V., Pardiñas, A. F., Qi, T., Panagiotaropoulou, G., Awasthi, S., Bigdeli, T. B., Bryois, J., Chen, C.-Y., Dennison, C. A., Hall, L. S., Lam, M., Watanabe, K., Frei, O., Ge, T., Harwood, J. C., Koopmans, F., Magnusson, S., Richards, A. L., Sidorenko, J., … et al. 2022. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 6047906, 502–508. https://doi.org/10.1038/s41586-022-04434-5
Vogelezang, S., Bradfield, J. P., Ahluwalia, T. S., Curtin, J. A., Lakka, T. A., Grarup, N., Scholz, M., van der Most, P. J., Monnereau, C., Stergiakouli, E., Heiskala, A., Horikoshi, M., Fedko, I. O., Vilor-Tejedor, N., Cousminer, D. L., Standl, M., Wang, C. A., Viikari, J., Geller, F., … Felix, J. F. 2020. Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits. PLoS Genetics, 1610, e1008718. https://doi.org/10.1371/journal.pgen.1008718
Warrington, N. M., Beaumont, R. N., Horikoshi, M., Day, F. R., Helgeland, Ø., Laurin, C., Bacelis, J., Peng, S., Hao, K., Feenstra, B., Wood, A. R., Mahajan, A., Tyrrell, J., Robertson, N. R., Rayner, N. W., Qiao, Z., Moen, G.-H., Vaudel, M., Marsit, C. J., … et al. 2019. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nature Genetics, 515, 804–814. https://doi.org/10.1038/s41588-019-0403-1
Yengo, L., Sidorenko, J., Kemper, K. E., Zheng, Z., Wood, A. R., Weedon, M. N., Frayling, T. M., Hirschhorn, J., Yang, J., Visscher, P. M., & GIANT Consortium. 2018. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Human Molecular Genetics, 2720, 3641–3649. https://doi.org/10.1093/hmg/ddy271